Investigation of the InAs/GaAs Quantum Dots’ Size: Dependence on the Strain Reducing Layer’s Position
نویسندگان
چکیده
This work reports on theoretical and experimental investigation of the impact of InAs quantum dots (QDs) position with respect to InGaAs strain reducing layer (SRL). The investigated samples are grown by molecular beam epitaxy and characterized by photoluminescence spectroscopy (PL). The QDs optical transition energies have been calculated by solving the three dimensional Schrödinger equation using the finite element methods and taking into account the strain induced by the lattice mismatch. We have considered a lens shaped InAs QDs in a pure GaAs matrix and either with InGaAs strain reducing cap layer or underlying layer. The correlation between numerical calculation and PL measurements allowed us to track the mean buried QDs size evolution with respect to the surrounding matrix composition. The simulations reveal that the buried QDs' realistic size is less than that experimentally driven from atomic force microscopy observation. Furthermore, the average size is found to be slightly increased for InGaAs capped QDs and dramatically decreased for QDs with InGaAs under layer.
منابع مشابه
Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملWavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy
In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...
متن کاملEnergy Levels of InGaAs/GaAs Quantum Dot Lasers with Different Sizes
In this paper, we have studied the strain, band-edge, and energy levels of cubic InGaAs quantum dots (QDs) surrounded by GaAs. It is shown that overall strain value is larger in InGaAs-GaAs interfaces, as well as in smaller QDs. Also, it is proved that conduction and valence band-edges and electron-hole levels are size dependent; larger QD sizes appeared to result in the lower recombination...
متن کاملTHE EQUILIBRIUM SHAPE OF InAs QUANTUM DOTS GROWN ON A GaAs (001) SUBSTRATE
The strain-induced self-assembly of small three-dimensional islands during heteroepitaxial growth represents an efficient way of producing quantum dots. A frequently studied example is InAs/GaAs(100), with the lattice mismatch amounting to about 7%. InAs grows on GaAs in the Stranski-Krastanov mode: Due to the smaller surface energy of InAs as compared to GaAs first a wetting layer forms, but w...
متن کاملInvestigation of GaInAs strain reducing layer combined with InAs quantum dots embedded in Ga(In)As subcell of triple junction GaInP/Ga(In)As/Ge solar cell
The InAs/GaAs quantum dots structure embedded in GaInP/Ga(In)As/Ge triple junction solar cell with and without Ga0.90In0.10As strain reducing layer was investigated. Conversion efficiency of 33.91% at 1,000 suns AM 1.5D with Ga0.90In0.10As strain reducing layer was demonstrated. A 1.19% improvement of the conversion efficiency was obtained via inserting the Ga0.90In0.10As strain reducing layer....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015